eGospodarka.pl
eGospodarka.pl poleca

eGospodarka.plGrupypl.sci.inzynieriaOstatni krok AchillesaRe: Ostatni krok Achillesa
  • Data: 2010-04-05 15:38:37
    Temat: Re: Ostatni krok Achillesa
    Od: "Robakks" <R...@g...pl> szukaj wiadomości tego autora
    [ pokaż wszystkie nagłówki ]

    "zdumiony" <z...@j...pl>
    news:hpcv3e$9bh$1@news.onet.pl...
    > "Robakks" <R...@g...pl>
    > news:hpcqbc$jl8$1@inews.gazeta.pl...

    >> Oczywiście, że można punkt styku okręgu z odcinkiem podzielić
    >> na dowolną ilość punktów jeszcze mniejszych, ale nie będą to już
    >> liczby rzeczywiste. Na osi liczbowej będą w tym samym miejscu.
    >> Aby je zobaczyć musiałbyś przeskalować oś.
    >> Edward Robak* z Nowej Huty

    > Jeśli nie liczby rzeczywiste to jakie - urojone?
    > Na osi liczbowej będą w tym samym miejscu bo będą w tym samym
    > punkcie! Przeskalowanie osi nic nie da!

    Nie jest jeszcze w pełni sformalizowana systematyka punktów mniejszych.
    Niektórzy matematycy intuicjoności nazywają je fraktalami.
    Ja wprowadziłem pojęcie 'podwymiarów' i stosuję do opisu ich wielkości
    rachunek N-kowy.
    Pamiętasz, gdy Ci pisałem, że punkt od BRAKpunktu rózni się tym, że
    ma ciało? Gdy punkt powiększysz continuum razy to zobaczysz go
    w całej rozciągłości. :-)
    Zobacz:
    Gdy odcinek o długości 1 pomniejszymy continuum razy, to otrzymamy
    punkt 1/C. Tyle ma styk okręgu z odcinkiem. Gdy ten styk powiększymy
    continuum razy, to na powrót otrzymamy odcinek.
    Edward Robak* z Nowej Huty
    ~>°<~ kopia na http://groups.google.pl/group/robakks?hl=pl
    miłośnik mądrości i nie tylko :)

Podziel się

Poleć ten post znajomemu poleć

Wydrukuj ten post drukuj


Następne wpisy z tego wątku

Najnowsze wątki z tej grupy


Najnowsze wątki

Szukaj w grupach

Eksperci egospodarka.pl

1 1 1

Wpisz nazwę miasta, dla którego chcesz znaleźć jednostkę ZUS.

Wzory dokumentów

Bezpłatne wzory dokumentów i formularzy.
Wyszukaj i pobierz za darmo: