eGospodarka.pl
eGospodarka.pl poleca

eGospodarka.plGrupypl.comp.programmingCzyżby NP=P ?!Re: Czyżby NP=P ?!
  • X-Received: by 2002:a37:9b17:: with SMTP id d23mr948068qke.140.1579840957322; Thu, 23
    Jan 2020 20:42:37 -0800 (PST)
    X-Received: by 2002:a37:9b17:: with SMTP id d23mr948068qke.140.1579840957322; Thu, 23
    Jan 2020 20:42:37 -0800 (PST)
    Path: news-archive.icm.edu.pl!news.icm.edu.pl!newsfeed.pionier.net.pl!feeder.erje.net
    !2.eu.feeder.erje.net!news.uzoreto.com!tr2.eu1.usenetexpress.com!feeder.usenete
    xpress.com!tr3.iad1.usenetexpress.com!border1.nntp.dca1.giganews.com!nntp.gigan
    ews.com!g89no4945068qtd.0!news-out.google.com!w29ni166qtc.0!nntp.google.com!g89
    no4945065qtd.0!postnews.google.com!google-groups.googlegroups.com!not-for-mail
    Newsgroups: pl.comp.programming
    Date: Thu, 23 Jan 2020 20:42:37 -0800 (PST)
    In-Reply-To: <f...@g...com>
    Complaints-To: g...@g...com
    Injection-Info: google-groups.googlegroups.com; posting-host=159.205.34.176;
    posting-account=xjvq9QoAAAATMPC2X3btlHd_LkaJo_rj
    NNTP-Posting-Host: 159.205.34.176
    References: <5e279ddd$0$547$65785112@news.neostrada.pl>
    <f...@g...com>
    User-Agent: G2/1.0
    MIME-Version: 1.0
    Message-ID: <8...@g...com>
    Subject: Re: Czyżby NP=P ?!
    From: "M.M." <m...@g...com>
    Injection-Date: Fri, 24 Jan 2020 04:42:37 +0000
    Content-Type: text/plain; charset="UTF-8"
    Content-Transfer-Encoding: quoted-printable
    Lines: 110
    Xref: news-archive.icm.edu.pl pl.comp.programming:214713
    [ ukryj nagłówki ]

    On Wednesday, January 22, 2020 at 6:02:12 PM UTC+1, bartekltg wrote:
    > On Wednesday, January 22, 2020 at 2:00:02 AM UTC+1, Borneq wrote:
    >
    > > Ale..
    >
    > Żade ale. To nie ma nic wsplnego z N ?= NP.
    > To algorytm probabilistyczny, przybliżony, aproksymacyjny...

    Chyba że w innym sensie niż klasycznym... Ale nie piszą też nic o tym, że
    ich algorytm jest aproksymacyjny.

    [
    These problemsare NOTORIOUSLY DIFFICULT because of combinatorial explosion (1,2).
    Thus,special-purpose hardware devices for these problems are expected to beuseful. In
    particular, "Ising machines"designed for finding a groundstate of the Ising spin
    model (3) have recently attracted much attentionbecause many combinatorial
    optimization problems CAN BE MAPPED tothe Ising problem (4), including
    very-large-scale integrated circuit de-sign (5), drug design (6), and financial
    portfolio management (7). Thesemachines have been developed by various approaches:
    quantum com-puters based on quantum annealing (8,9) or quantum adiabatic
    opti-mization (10-12) implemented with superconducting circuits (13,14),coherent
    Ising machines (CIMs) implemented with laser pulses (15-20),and Ising machines based
    on simulated annealing (SA) (1,21,22)im-plemented with digital circuits such as
    field-programmable gate arrays(FPGAs) (23-29).
    ]


    [
    In this challenge, intense research efforts are underway to pave alternative
    approaches for computing and information processing. Among them, Ising machines have
    been shown to offer viable solutions for important NP-hard problems such as MAX-CUT 6
    , protein folding 7 , and traveling salesman 8 , among others
    [9][10][11][12][13][14][15] . To this end, a variety of Ising machines have been
    demonstrated in effective spin systems of trapped atoms 16,17 , polariton condensates
    18 , superconducting circuits 19 , coupled oscillators [20][21][22] , nanophotonic
    waveguides [23][24][25] , randomly coupled lasers [26][27][28] , and time-multiplexed
    optical parametric oscillators 29,30
    ]

    Klasycznie/asymptotycznie też nie wierzę żeby NP=P na dowolnym rozmiarze, w
    łatwiej postawione wyzwania też nie dowierzam. Ale można szukać bardzo
    szybkich i w miarę dokładnych algorytmów dla problemów o ograniczonym rozmiarze.

    Tu też ciekawszy cytat:
    [
    Solving an all-to-all connected 2000-node MAX-CUTproblem by a single-FPGA SB
    machineFrom the advantages and properties of SB, we expect that SB will beuseful for
    approximately solving large-scale Ising or MAX-CUT prob-lems with dense connectivity
    as fast as possible. To check this expec-tation, we compare our SB machine with a
    state-of-the-art CIM (17,19),because this machine has achieved outstanding
    performance for theseproblems. For this comparison, we solved an all-to-all connected
    2000-node MAX-CUT problem named K2000,whichwassolvedbytheCIM(17,19).We implemented an
    SB-based 2000-spin Ising machine with a singleFPGA. The product-sum operation, ?Nj
    1/4 1Ji;jxj, in Eq. 8, which is the mostcomputation-intensive part in SB, is
    performed efficiently by massivelyparallel processing. Ji,jxjterms of up to 8192 are
    processed at a singleclock, which is about four times more than the total spins. See
    the Sup-plementary Materials for details.One of the main results in (17) is that the
    CIM reached a targetenergy given by the Goemans-Williamson semidefinite
    programming(GW-SDP) algorithm (17,38) in about 70 ms in the best case among100
    trials, which is about 50 times shorter than that by the SA highlytuned in (17). [The
    SA in (17,19) is very fast by putting all the elementsof the coupling matrix Jon a
    cache of a single core. Thus, parallel com-puting with multiple cores cannot
    accelerate the SA because of commu-nication overheads.] In comparison with this, our
    single-FPGA SBmachine reaches the GW-SDP value in only 58 ms even in the worst
    caseamong 100 trials, as shown in Fig. 2A.Anothermainresultin(17) is that the CIM
    took only 5 ms to obtainas good solutions (large cut values) as the highly tuned SA
    obtained in50 ms, where the cut value of the MAX-CUT problem is given
    by?EIsing2?14?Ni 1/4 1?Nj 1/4 1Ji;jwith Ising parameters (see the
    SupplementaryMaterials). Figure 2B shows that our SB machine takes only 0.5 ms to
    obtain better solutions on average than both the CIM in 5 ms and theSA in 50 ms.
    ]



    > Komiwojadzera też mozęsz rozwiązać w czasie liniowym, tylko niedokładnie.
    > pytanie czy P=NP dotyczy znajdowania ścisłego, optymalnego rozwiązania.
    > Ale dla wielu rzeczywistych przpadków takie przybliżone
    > rozwiązanie jest wystarczająco dobre.
    >
    > I tu zaproponowali takie przylizone rozwiązanie*) dla jakeigoś
    > problemu kombinarytorycznego, coś z modelem Isinga.
    >
    > https://www.researchgate.net/publication/332535366_C
    ombinatorial_optimization_by_simulating_adiabatic_bi
    furcations_in_nonlinear_Hamiltonian_systems
    >
    > Porównują się do symulowanego wyzarzania i jakeigoś algorytmu
    > zaprojektowanego pos isinga.

    Na to wygląda.


    > *) kantowy w sumie daje to samo:)


    Podali za dużo literatury pomocniczej jak na rozrywkę przy śniadaniu ;-)


    Pozdrawiam

Podziel się

Poleć ten post znajomemu poleć

Wydrukuj ten post drukuj

Najnowsze wątki z tej grupy


Najnowsze wątki

Szukaj w grupach

Eksperci egospodarka.pl

1 1 1

Wpisz nazwę miasta, dla którego chcesz znaleźć jednostkę ZUS.

Wzory dokumentów

Bezpłatne wzory dokumentów i formularzy.
Wyszukaj i pobierz za darmo: